CME2 Comment sont alimentés nos appareils électriques ?


Séquence n °2

Comment évaluer sa consommation d'énergie électrique ?

1- Mise en situation

En laissant les appareils en veille, on augmente sa facture d'électricité d'environ 10%.

Source: ADEME

Pourquoi un appareil en mode veille consomme de l'énergie?

Les appareils laissés en position veille consomment de l'électricité :

Même si cette consommation peut paraître faible à l'échelle d'un foyer, elle est considérable au niveau d'un pays.

Laisser les **appareils** électriques, électroniques, les ordinateurs, le téléviseur, le lecteur DVD ou encore la chaîne stéréo **en veille** contribue à l'**augmentation de la facture d'électricité** d'un ménage de plus de 10 % par an. L'accumulation de l'énergie consommée par les différents appareils en veille dans un foyer peut atteindre 300 kWh par an, soit 10 % de la consommation totale.

Au niveau de la France, si tous les foyers éteignaient leurs **appareils en veille**, l'énergie économisée correspondrait à la production du quart d'une centrale nucléaire, soit la consommation d'électricité des villes de Lyon et Nice réunies, selon l'<u>ADEME</u>.

Voici quelques exemples de consommation d'appareils laissés en veille :

Télévision: 3 à 20 W

Magnétoscope: 6 à 15 W

Chaîne stéréo: o à 5 W

Ordinateur PC: oà4W

Lecteur CD: o à 21 W

Système alarme : 10 à 15 W

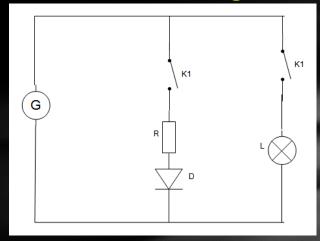
Radio-réveil: 1 à 3 W

Photocopieur: 20 à 25 W

Fax: 10 à 20 W

Machine à café : 2 à 4 W

Baisser sa consommation d'électricité a des conséquences multiples :


- Participer à la réduction des gaz à effet de serre émis par les centrales à énergies fossiles et responsables du réchauffement climatique
- Éviter la construction de nouvelles centrales de production d'électricité, à partir de l'énergie nucléaire ou des énergies fossiles, pour satisfaire des besoins en électricité toujours plus importants
- Lutter contre la hausse du prix de l'énergie, à cause d'une demande toujours croissante
- Réduire sa facture d'électricité

Éteindre les appareils en veille est un geste éco-citoyen : c'est simple, c'est important pour vous et pour l'environnement, alors pensez-y!

2-TP: modélisation d'une situation d'appareils électriques en veille.

Nous pouvons simuler la consommation d'énergie d'un appareil à

partir du montage suivant:

Si le téléviseur est éteint:

- Le générateur est hors tension,
- L'interrupteur K₁ est ouvert, l'interrupteur K₂ est ouvert,
- La diode est éteinte,
- La lampe est **éteinte**.

<u>Avec le joulemètre :</u>

$$t_1 = 0 \text{ s}$$

 $E_1 = 0 \text{ J}$

Si le téléviseur est en veille:

- Le générateur est sous tension,
- L'interrupteur K₁ est fermé, l'interrupteur K₂ est ouvert,
- La diode est allumée (rouge),
- La lampe est éteinte.

Avec le joulemètre :

$$t_2 = 86,90 \text{ s}$$

$$E_2 = 11,95$$
 J

Si le téléviseur est en fonctionnement:

- Le générateur est sous tension,
- L'interrupteur K₁ est ouvert, l'interrupteur K₂ est fermé,
- La diode est allumée (verte),
- La lampe est allumée.

<u>Avec le joulemètre :</u>

$$t_3 = 58, 13 \text{ s}$$

$$E_3 = 373,6$$
 J

3- Ce que je retiens.

• La puissance électrique:

Les dipôles résistifs (résistances chauffantes ou électroniques, ...) transfèrent l'énergie électrique qu'ils reçoivent en chaleur. Dans ce cas, la puissance électrique se calcule, en courant alternatif avec la relation:

P = U.I

l est <u>l'intensité efficace</u> du courant qui traverse le dipôle, U est <u>la tension efficace</u> aux bornes du dipôle.

Exemples:

Pour un fer à repasser:

$$U = 220 V \text{ et } I = 5,22 A$$

On a:
$$P = U.I d'$$

$$d'o\dot{v} P = 220 \times 5,22 = 1200 W$$

• Additivité des puissances:

Lorsque plusieurs appareils d'une même installation fonctionnent en même temps, la puissance électrique totale, transférée par ces appareils est égale à la somme des puissances de chaque appareil: il en est de même pour l'énergie.

Si on ajoute des appareils, on doit veiller à ne pas créer de surcharge!!!!

• L'énergie électrique

L'énergie électrique transférée pendant une durée t à un appareil de puissance P est donnée par la relation:

Joule (J)
$$\leftarrow$$
 $E = P.t$ \rightarrow Seconde (s) \leftarrow Watt (W)

Les unités:

Grandeur	Ε	P	t
Unité légale (S.I.)	joule (J)	watt (W)	seconde (s)
Unité pratique	kilowattheure (kWh)	kilowatt (kW)	heure (h)

1 Wh = 3 600 J
1 kWh = 1 000
$$\times$$
 3 600
= 3,6 \times 10⁶ J

O.C.M page 53: je vérifie que j'ai compris.

Tester ses connaissances

Q.C.M. Pour chaque ligne, indiquer la (ou les) bonne(s) réponse(s).

	A	В	C
1. La relation liant l'énergie transférée au cours d'une durée t à un appareil de puissance P est	P = E.t	$P = \frac{E}{t}$	E = P.t
2. L'énergie électrique s'exprime en	kilowatt (kW)	joule (J)	wattheure (Wh)
3. L'indication en caractère gras indique 75 WATTS 220/230 V	l'énergie transférée par la lampe en une heure	l'intensité de la lumière émise par la lampe	la puissance prévue par le constructeur de la lampe
4. Un kilowatt-heure correspond à	3 600 J	3600kJ	3,6 × 10 ⁶ J